Overview of the Simulation Modeling Process

Nathaniel Osgood CMPT 858 January 18, 2011

Announcements

• Tutorial vote link sent

Please vote by Wednesday evening

- Download & install Vensim PLE
 - <u>http://www.vensim.com/freedownload.html</u>

Overview of Modeling Process

- Typically conducted with an interdisciplinary team
- An ongoing process of refinement
- Best: Iteration with modeling, intervention implementation, data collection
- Often it is the modeling process itself rather than the models created – that offers the greatest value

Modeling Process Overview

Group model building

Modeling Process Overview

Group model building

Identification of Questions/ "The Problem"

- All models are simplifications and "wrong"
- Some models are useful
- Attempts at perfect representation of "real-world" system generally offer little value
- Establishing a clear model purpose is critical for defining what is included in a model
 - Understanding broad trends/insight?
 - Understanding policy impacts?
 - Ruling out certain hypotheses?
- Think explicitly about model boundaries
- Adding factors often does not yield greater insight
 - Often simplest models give greatest insight
 - Opportunity costs: More complex model takes more time to build=>less time for insight

Importance of Purpose

Firmness of purpose is one of the most necessary sinews of character, and one of the best instruments of success. Without it genius wastes its efforts in a maze of inconsistencies.

Lord Chesterfield

The secret of success is constancy of purpose. Benjamin Disraeli

The art of model building is knowing what to cut out, and the purpose of the model acts as the logical knife. It provides the criterion about what will be cut, so that only the essential features necessary to fulfill the purpose are left.

John Sterman

Common Division

- Endogenous
 - Things whose dynamics are calculated as part of the model
- Exogenous
 - Things that are included in model consideration, but are specified externally
 - Time series
 - Constants
- Ignored/Excluded
 - Things outside the boundary of the model

Example of Boundary Definition

Fiddaman

A Feedback-Rich Climate-Economy Model (1998)

Table 1: Model Boundary

Endogenous	Exogenous	Excluded
Economic output	Population	Labor mobility and participation
Consumption	Factor productivity	Money stocks and monetary
Interest rates	Autonomous energy efficiency	effects
Investment	improvement	Non-energy resources
Embodiment of energy requirements in capital	Oil/gas and coal prices (1960- 1990)	Regional disaggregation
		Sectoral disaggregation (other
Energy prices	Nonenergy CO ₂ emissions	than energy)
Energy production	Greenhouse gases other than	Fossil-fired electric power generation
Energy technology	002	Inventories and backlogs
Depletion		
CO ₂ Emissions		
Carbon Cycle		
Atmosphere and ocean temperature		
Climate damages		

Modeling Process Overview

Group model building

Example Causal Loop Diagram

Departme Science

A Second Causal Loop Diagram

These "parameters" give static characteristics of the agent

These describe the "behaviours" – the mechanisms that will govern agent dynamics

Stock & Flow Structure

Problem Mapping: Qualitative Models (System Structure Diagram)

Headley, J., Rockweiler, H., Jogee, A. 2008. Women with HIV/AIDS in Malawi: The Impact of Antiretroviral Therapy on Economic Welfare, Proceedings of the 2008 International Conference of the System Dynamics Society, Athens, Greece, July 2008.

Modeling Process Overview

Group model building

Model Formulation

- Model formulation elaborates on problem mapping to yield a quantitative model
- Key missing ingredients
 - Specifying formulas for
 - Statechart transitions
 - Flows (in terms of other variables)
 - Intermediate/output variables
 - Parameter values

Transition Type: Message Triggered

Transition Type: Fixed Rate

Transition Type: Variable Rate

Transition Type: Fixed Residence Time (Timeout)

Simple Intermediate Variable

Simple Intermediate Variable

Editing equation for - Fraction of Diabetics in CRF Stage 2				
Fraction	of Diabetics in CRF Stage 2	Add Eq.		
=	T2DM with CRF Stage 2/Total Diabetics	~		
Type Auxiliary Norma Sup	Undo 7 8 9 + Variables Functions More (()) 4 5 6 - Choose Variable Inputs I 2 3 × T2DM with CRF Stage 2 Total Diabetics Help () . ^	_		
Units:				
Com- ment:		<		
Group:	.v15 💌 Range: 👘 👘 Go To: Prev Next < Hilite	Sel New		
Errors:	Equation Modified	-		
OK	Check Syntax Check Model Delete Variable	Cancel		

Simple Basis for Formula: 1st Order Delay

Model Stock & Flow Structure

More Sophisticated Formula: Contact Rates and Transmission Probs.

- Contacts per susceptible: c
- Fraction of contacts that are infective: Y/N
- Per-contact transmission probability: β
- "Force of infection": Likelihood each susceptible will be infected per unit time
 - Common formulation

• c(Y/N)β

• Flow: Total # infections per unit time

 $-X^*(Force of Infection) = X(c(Y/N)\beta)$

- Note that this = $Y(c(X/N)\beta)$

Sources for Parameter Estimates

- Surveillance data
- Controlled trials
- Outbreak data
- Clinical reports data
- Intervention outcomes studies
- Calibration to historic data
- Expert judgement
- Systematic reviews

Parameter*	Description	Baseline value	Reference
		(units)	
μ	Entry/exit of sexual activity	0.0056 (years ⁻¹)	Garnett and
			Bowden, 2000
с	Partner change rate per	16.08 (years ⁻¹)	Approximated
	Susceptible		from Garnett
			and Bowden,
			2000
β	Probability of infection per	0.70	Garnett and
	sexual contact		Bowden, 2000
φ	Fraction of Infectives who	0.20	Garnett and
	are symptomatic		Bowden, 2000
1/y	Latent period	0.038 (years)	Brunham et.
			al., 2005
$1/\sigma$	Duration of infection	0.25 (years)	Brunham et.
			al., 2005
θ	Asymptomatic recovery	1.5	Garnett and
	coefficient		Bowden, 2000
$1/\pi$	Duration of naturally-	1 (year)	Approximated
	acquired immunity		from Brunham
			et. al., 2005

Introduction of Parameter Estimates

Some dynamics models will provide much more detail on networks of factors shaping these rates, but ultimately there will be constants that need to be specified

Modeling Process Overview

Group model building

Calibration

 Often we don't have reliable information on some parameters

– Some parameters may not even be observable!

- Some parameters may implicitly capture a large set of factors not explicitly represented in model
- Often we will calibrate less well known parameters to match observed data
 - "Analytic triangulation": Often try to match against many time series or pieces of data at once
- Sometimes we learn from this that our model structure just can't produce the patterns!

Single Model Matches Many Data Sources

Historical Total T2DM Deaths for Time by Ethnicity[GP] : Population Epi Calibra Total Diabetic Deaths by Ethnicity[GP] : Population Epi Calibra: Historical Total T2DM Deaths for Time by Ethnicity[RI] : Population Epi Calibrat Total Diabetic Deaths by Ethnicity[RI] : Population Epi Calibration v3 3 T2DM F

The Pieces of the Elephant Example Model of Underlying Process & Time Series It Must Match

Example: Iteration & Calibration

From Sterman

From Sterman

Expanding the Boundary: Behavioral Feedbacks

Cumulative Cases

People

Modeling Process Overview

Group model building

Units & Dimensions

- Distance
 - Dimension: Length
 - Units: Meters/Fathoms/Li/Parsecs
- Frequency (Growth Rate, etc.)
 - Dimension:1/Time
 - Units: 1/Year, 1/sec, etc.
- Fractions
 - Dimension: "Dimensionless" ("Unit", 1)
 - Units: 1

Dimensional Analysis

- DA exploits structure of dimensional quantities to facilitate insight into the external world
- Uses
 - Cross-checking dimensional homogeneity of model
 - Deducing form of conjectured relationship (including showing independence of particular factors)
 - Sanity check on validation of closed-form model analysis
 - Checks on simulation results
 - Derivation of scaling laws
 - * Construction of scale models
 - Reducing dimensionality of model calibration, parameter estimation

Sensitivity Analyses

- Same relative or absolute uncertainty in different parameters may have hugely different effect on outcomes or decisions
- Help identify parameters that strongly affect
 - Key model results
 - Choice between policies
- We place more emphasis in parameter estimation into parameters exhibiting high sensitivity

Sensitivity in Initial Value

- Frequently we don't know the exact state of the system at a certain point in time
- A very useful type of sensitivity analysis is to vary the initial value of model stocks
- In Vensim, this can be accomplished by
 - Indicating a parameter name within the "initial value" area for a stock
 - Varying the parameter value

Imposing a Probability Distribution Monte Carlo Analysis

- We feed in probability distributions to reflect our uncertainty about one or more parameters
- The model is run many, many times (realizations)
 - For each realization, the model uses a different draw from those probability distribution
- What emerges is resulting probability distribution for model outputs

Example Resulting Distribution

Static Uncertainty

Dynamic Uncertainty: Stochastic Processes

Dynamic Uncertainty: Stochastic Processes

Mathematical Analysis of Models

System Linearization (Jacobian)

Applied Math & Dynamic Modeling

- Although you may not use it, the dynamic modeling presented rests on the tremendous deep & rich foundation of applied mathematics
 - Linear algebra
 - Calculus (Differentia/Integral, Uni& Multivariate)
 - Differential equations
 - Numerical analysis (including numerical integration, parameter estimation)
 - Control theory
- For the mathematically inclined, the tools of these areas of applied math are available

Comments on Mathematics & Dynamic Modeling

- Many accomplished & well-published dynamic modelers have limited mathematical background
 - Can investigate pressing & important issues
 - Software tools are making this easier over time
- Can gain extra insight/flexibility if willing to push to learn some of the associated mathematics
- Achieving highest skill levels in dynamic modeling do require mathematical facility and sophistication
 - To do sophisticated work, often those lacking this background or inclination collaborate with someone with background

Examples of Mathematical Insights from System Dynamics Models

- Identification of long-term behavior
 - Eventual outcome(s)
 - The impact of parameters on outcomes
 - The robustness of these outcomes to disturbance
- Insight into key causal linkages driving the system at each point in time
- Identification of high leverage parameters (interventions)
- Explanation for elements of observed behavior

Example: Simple SITS Model

Associated System of State Equations

Modeling Process Overview

Group model building

Late Availability of HC Workers

Prevalence

Prevalence : Baseline 30 HC Workers Prevalence : Alternative HC Workers Late 50 Prevalence : Alternative HC Workers Late 100 Prevalence : Alternative HC Workers Late 200 Prevalence : Alternative HC Workers Late 300

Simulation Analysis: Scenarios for Understanding How X affects System

Policy Formulation & Evaluation

Policy Comparison: Stochastic Processes

Policy Comparison: Stochastic Processes

Modeling Process Overview

Group model building

OVERVIEW OF THE MODEL

Simplified causal loop diagram of the overall model

THE INTERACTIVE DYNAMIC SIMULATOR (BWATERGAME)

Treatment Options	Instructions Control Panel 8 decision 18 hours 2 period
Drug Infusion ?	Key Indicators
intravenous DOSE DIURETIC	Body Water Units: ? ExtracellularNa conc ? Units: ? 125
	Intracellular Fluid Vol 16.7 ? [Liter] Mean Arter Press 111 ? [mmHg] Extracellular Fluid Vol 16.7 ? [Liter] WaterIn current period 0.3 ? [Liter] Intracellular Fluid Vol 29.4 ? [Liter] UrineOut current period 0.2 ? [Liter]
	Body Sodium Units: Units: ? ECNa correction ?
?	Extracellular Na 1899 ? [mEq] Glomerular Filtr Rate 131 ? [ml/min] Extracellular Na conc 121 ? [mEq/L] Na In Current Period 60 ? [mEq] Urinary Na conc 60 ? [mEq/L] Na Out Current Period 21 ? [mEq] 0.6
	Graph
HYPERTONIC 3% SALINE	Hormonal Indicators Units: ? Renin ratio 0.2 ? ALD ratio to normal 0.6 ? [] ANH ratio to normal 3.6 ? [] 111
U? 800	Graph
?	About Controls Record of Decisions Vary Scenario New Game Advance Start Start End Game
	Barlas/Karanfil, 2007

Results of the Game Tests by Players

Stakeholder Action Labs

• Team Meetings

Mabry, 2009, "Simulating the Dynamics of Cardiovascular Health and Related Risk Factors" Key Take-Home Messages from this Morning

- Models express dynamic hypotheses about processes underlying observed behavior
- Models help understanding how diverse pieces of system work together
- SD focus on feedbacks as the fundamental shapers of dynamics
- Models are specific to purpose
- System dynamics includes both qualitative & quantitative components
- SD models admit to formal reasoning & analysis

Department of Computer Science